Scheduled special issues
The following special issues are scheduled for publication in AMT:
A
This special issue consists of papers that describe the modelling, observations, and analysis of data related to the ACROSS (Atmospheric Chemistry of the Suburban Forest) field measurement campaign that took place in summer 2022 in the Paris region. It could also include papers describing new instrumentation or new instrumental configurations used during the campaign. Any papers directly related to the ACROSS project are welcome for submittal to this special issue.
C
The climate crisis is one of the grand challenges of the 21st century. The increase in Earth's surface temperature, commonly known as global warming or anthropogenically induced climate change, is primarily driven by the rise in greenhouse gases (GHGs) in the atmosphere. The two most significant greenhouse gases affected by human activity are carbon dioxide (CO2) and methane (CH4).
While human activities such as fossil fuel combustion, oil and gas exploration, waste management, and agriculture are major sources of GHGs, natural sources also play a significant role. Extensive wetlands, for example, are the largest natural source of CH4 globally. In wetlands, methane is produced by soil microbes and plants that metabolize under anaerobic conditions and is then released into the atmosphere through diffusion, transport via plant tissues, and gas bubble emissions. These processes make global wetlands among the most important yet least understood sources and sinks in the global methane and CO2 budget.
A major scientific challenge in this context is distinguishing between methane emissions from natural sources and those resulting from human activities. Our understanding of these processes, their relative magnitudes, and the associated feedback mechanisms – such as increased wildfire activity, permafrost thaw, or changes in inundation patterns – is still insufficient to fully meet the needs of scientists and policymakers in predicting and mitigating climate warming.
To enhance our understanding of greenhouse gas budgets, a series of airborne measurement campaigns, known as CoMet (Carbon Dioxide and Methane Mission), have been conducted using the unique capabilities of the German research aircraft HALO. The CoMet campaigns integrate active airborne remote sensing measurements with lasers, passive remote sensing with spectrometers and solar radiation, and advanced in situ greenhouse gas concentration measurements, alongside an extensive suite of meteorological parameters. These observations are further supported by extensive modelling activities that also contribute to validating existing GHG satellite data and preparing for the next generation of such missions.
The first CoMet campaign took place in 2018, and its findings were published in a special inter-journal issue of AMT/ACP/GMD. The follow-up campaign, CoMet 2.0 Arctic (https://comet2arctic.de), was successfully conducted during a 6-week intensive operation period in August and September 2022 in Canada. The research flights focused on greenhouse gas emissions from boreal wetlands, permafrost areas in the Canadian Arctic, and wildfires, as well as anthropogenic sources like oil, gas, and coal extraction sites and landfills (in Canada and, during a test flight, in Spain). This campaign provided a valuable dataset for understanding methane and carbon dioxide cycles, particularly at high northern latitudes.
CoMet 2.0 Arctic is also part of the transatlantic AMPAC (Arctic Methane and Permafrost Challenge) initiative, a collaborative effort between NASA and ESA that fosters cooperation among US, Canadian, and European research institutes in this crucial area of research.
The special issue is open to all contributions that fit the topic from participants of the CoMet 2.0 Arctic field mission, the AMPAC community, and associated research partners.
F
H
I
N
O
P
Q
ACTRIS statements of the purpose of the special issue on stay-at-home policies in response to the COVID-19 pandemic have resulted in an unprecedented decrease in pollutant emissions and in a well-publicized improvement of air quality in many cities in Asia, Europe and America. While the impact of lockdown on air quality was unambiguously detected in the urban areas through both in situ and space remote-sensing observations and its spatial and temporal extents, the specific role of meteorology and the cascade responses from indirect and non-linear effects are far from being fully evaluated. Throughout the very specific year 2020, ACTRIS and its partner institutions engaged in a pan-European effort to document the impact of governmental policies on atmospheric composition. ACTRIS maintained its operations at fully nominal standards, even increasing its sampling capacity in some cases. The ACTRIS data collection containing measurements of aerosol, cloud and trace gas properties across Europe measured during the year 2020 has been compiled and made available by the ACTRIS Data Centre units. Data from the year 2021 will soon follow. A community of scientists started evaluating the impact of the repeated lockdowns over the European regions. Because concentration and properties of short-lived atmospheric species are highly variable in space and time, evaluating the impact of reduced emissions is not straightforward. The special issue “Quantifying the impacts of stay-at-home policies on atmospheric composition and properties of aerosol and clouds over the European regions using ACTRIS related observations” will gather a series of scientific papers dealing with the measurable effects of lockdown measures over Europe. The special issue will particularly be dealing with
- quantifying the spatial and temporal extent of stay-at-home policies on the European atmosphere, at both local and regional scales,
- evaluating the impact of lockdown measures on the formation of secondary pollutants,
- documenting the impact of reduced emissions (including air-traffic emissions) on cloud properties and occurrence, and
- estimating the “missing” emissions using observation–model approaches. The outcome from the special issue aims to provide an in-depth analysis of the perturbation induced by the repeated lockdowns on the complex atmospheric system. The special issue is open for all submissions within its scope.
R
SCOR (Scientific Committee on Oceanic Research) Working Group 167 (Reducing Uncertainty in Soluble aerosol Trace Element Deposition, RUSTED), appointed in October 2022, brings together experts from the atmospheric chemistry, ocean biogeochemistry, and modelling communities. Aiming to reduce uncertainties in soluble aerosol trace element deposition, RUSTED will quantitatively assess different aerosol leaching schemes; formulate standard operating procedures (SOPs) for frequently used aerosol leaching schemes; and develop a user-friendly, open-access database of aerosol trace element data which includes advice on the use of the data in Earth system models.
In this special issue, we propose to curate cutting-edge studies which advance our knowledge of the deposition of soluble aerosol trace elements and their impacts on marine ecosystems. We also encourage the submission of manuscripts which address challenges and/or report recent advances in the field of aerosol trace element deposition from researchers outside the working group.
S
It consists of about 60 sites located all over the world. The main instrument at each site is the sun—sky radiometer, but to strengthen the ability of SKYNET, simultaneous measurements with other instruments such as pyranometers, pirgeometers, microwave radiometers, absorption meters, cloud cameras, lidars, MAX-DOAS, and instrumentation for in situ characterisation are also conducted for some selected sites.
This special issue will face issues related to the following topics: aerosol and cloud properties from radiometers; developments on instrumentation; aerosol radiative forcing and climate effects; intercomparison among radiometer networks; validation of aerosol and cloud properties from satellite and models; applications for air pollution studies; and applications for solar energy.
T
The Joint Aeolus Tropical Atlantic Campaign (JATAC) used ground-based, aircraft, and balloon measurements to validate data provided by ESA's Aeolus satellite and support related science activities on the interaction of wind, dust, and clouds. ESA’s Aeolus satellite observations are expected to have the biggest impact on the improvement of numerical weather prediction in the tropics. An important case relating to the predictability of tropical weather systems is the outflow of Saharan dust, its interaction with cloud microphysics, and its impact on the development of tropical storms over the Atlantic Ocean. JATAC, deployed over Cabo Verde (2021–2022) and the US Virgin Islands (2021), supported the validation and preparation of the ESA Aeolus, EarthCARE, and WIVERN missions. It also addressed science objectives regarding the Saharan aerosol layer, the African easterly waves and jet, the tropical easterly jet, and the Intertropical Convergence Zone (including their relation to the formation of convective systems) as well as the long-range transport of dust and its impact on air quality.
This special issue (SI) collects the studies that utilized the synergy of remote sensing, surface-based, and airborne observations to address the satellite validation objectives and spatio-temporal representativeness of the different atmospheric measurement techniques. The SI studies bring together different observations from the individual ground-based and airborne campaign activities that have taken place in the frame of JATAC, to demonstrate the added value of the synergistic use of different measurements and platforms to address open science questions related to dynamics and the interactions of aerosols with clouds and radiation.
2024
The climate crisis is one of the grand challenges of the 21st century. The increase in Earth's surface temperature, commonly known as global warming or anthropogenically induced climate change, is primarily driven by the rise in greenhouse gases (GHGs) in the atmosphere. The two most significant greenhouse gases affected by human activity are carbon dioxide (CO2) and methane (CH4).
While human activities such as fossil fuel combustion, oil and gas exploration, waste management, and agriculture are major sources of GHGs, natural sources also play a significant role. Extensive wetlands, for example, are the largest natural source of CH4 globally. In wetlands, methane is produced by soil microbes and plants that metabolize under anaerobic conditions and is then released into the atmosphere through diffusion, transport via plant tissues, and gas bubble emissions. These processes make global wetlands among the most important yet least understood sources and sinks in the global methane and CO2 budget.
A major scientific challenge in this context is distinguishing between methane emissions from natural sources and those resulting from human activities. Our understanding of these processes, their relative magnitudes, and the associated feedback mechanisms – such as increased wildfire activity, permafrost thaw, or changes in inundation patterns – is still insufficient to fully meet the needs of scientists and policymakers in predicting and mitigating climate warming.
To enhance our understanding of greenhouse gas budgets, a series of airborne measurement campaigns, known as CoMet (Carbon Dioxide and Methane Mission), have been conducted using the unique capabilities of the German research aircraft HALO. The CoMet campaigns integrate active airborne remote sensing measurements with lasers, passive remote sensing with spectrometers and solar radiation, and advanced in situ greenhouse gas concentration measurements, alongside an extensive suite of meteorological parameters. These observations are further supported by extensive modelling activities that also contribute to validating existing GHG satellite data and preparing for the next generation of such missions.
The first CoMet campaign took place in 2018, and its findings were published in a special inter-journal issue of AMT/ACP/GMD. The follow-up campaign, CoMet 2.0 Arctic (https://comet2arctic.de), was successfully conducted during a 6-week intensive operation period in August and September 2022 in Canada. The research flights focused on greenhouse gas emissions from boreal wetlands, permafrost areas in the Canadian Arctic, and wildfires, as well as anthropogenic sources like oil, gas, and coal extraction sites and landfills (in Canada and, during a test flight, in Spain). This campaign provided a valuable dataset for understanding methane and carbon dioxide cycles, particularly at high northern latitudes.
CoMet 2.0 Arctic is also part of the transatlantic AMPAC (Arctic Methane and Permafrost Challenge) initiative, a collaborative effort between NASA and ESA that fosters cooperation among US, Canadian, and European research institutes in this crucial area of research.
The special issue is open to all contributions that fit the topic from participants of the CoMet 2.0 Arctic field mission, the AMPAC community, and associated research partners.
The Joint Aeolus Tropical Atlantic Campaign (JATAC) used ground-based, aircraft, and balloon measurements to validate data provided by ESA's Aeolus satellite and support related science activities on the interaction of wind, dust, and clouds. ESA’s Aeolus satellite observations are expected to have the biggest impact on the improvement of numerical weather prediction in the tropics. An important case relating to the predictability of tropical weather systems is the outflow of Saharan dust, its interaction with cloud microphysics, and its impact on the development of tropical storms over the Atlantic Ocean. JATAC, deployed over Cabo Verde (2021–2022) and the US Virgin Islands (2021), supported the validation and preparation of the ESA Aeolus, EarthCARE, and WIVERN missions. It also addressed science objectives regarding the Saharan aerosol layer, the African easterly waves and jet, the tropical easterly jet, and the Intertropical Convergence Zone (including their relation to the formation of convective systems) as well as the long-range transport of dust and its impact on air quality.
This special issue (SI) collects the studies that utilized the synergy of remote sensing, surface-based, and airborne observations to address the satellite validation objectives and spatio-temporal representativeness of the different atmospheric measurement techniques. The SI studies bring together different observations from the individual ground-based and airborne campaign activities that have taken place in the frame of JATAC, to demonstrate the added value of the synergistic use of different measurements and platforms to address open science questions related to dynamics and the interactions of aerosols with clouds and radiation.
2023
SCOR (Scientific Committee on Oceanic Research) Working Group 167 (Reducing Uncertainty in Soluble aerosol Trace Element Deposition, RUSTED), appointed in October 2022, brings together experts from the atmospheric chemistry, ocean biogeochemistry, and modelling communities. Aiming to reduce uncertainties in soluble aerosol trace element deposition, RUSTED will quantitatively assess different aerosol leaching schemes; formulate standard operating procedures (SOPs) for frequently used aerosol leaching schemes; and develop a user-friendly, open-access database of aerosol trace element data which includes advice on the use of the data in Earth system models.
In this special issue, we propose to curate cutting-edge studies which advance our knowledge of the deposition of soluble aerosol trace elements and their impacts on marine ecosystems. We also encourage the submission of manuscripts which address challenges and/or report recent advances in the field of aerosol trace element deposition from researchers outside the working group.
This special issue consists of papers that describe the modelling, observations, and analysis of data related to the ACROSS (Atmospheric Chemistry of the Suburban Forest) field measurement campaign that took place in summer 2022 in the Paris region. It could also include papers describing new instrumentation or new instrumental configurations used during the campaign. Any papers directly related to the ACROSS project are welcome for submittal to this special issue.
2022
2021
ACTRIS statements of the purpose of the special issue on stay-at-home policies in response to the COVID-19 pandemic have resulted in an unprecedented decrease in pollutant emissions and in a well-publicized improvement of air quality in many cities in Asia, Europe and America. While the impact of lockdown on air quality was unambiguously detected in the urban areas through both in situ and space remote-sensing observations and its spatial and temporal extents, the specific role of meteorology and the cascade responses from indirect and non-linear effects are far from being fully evaluated. Throughout the very specific year 2020, ACTRIS and its partner institutions engaged in a pan-European effort to document the impact of governmental policies on atmospheric composition. ACTRIS maintained its operations at fully nominal standards, even increasing its sampling capacity in some cases. The ACTRIS data collection containing measurements of aerosol, cloud and trace gas properties across Europe measured during the year 2020 has been compiled and made available by the ACTRIS Data Centre units. Data from the year 2021 will soon follow. A community of scientists started evaluating the impact of the repeated lockdowns over the European regions. Because concentration and properties of short-lived atmospheric species are highly variable in space and time, evaluating the impact of reduced emissions is not straightforward. The special issue “Quantifying the impacts of stay-at-home policies on atmospheric composition and properties of aerosol and clouds over the European regions using ACTRIS related observations” will gather a series of scientific papers dealing with the measurable effects of lockdown measures over Europe. The special issue will particularly be dealing with
- quantifying the spatial and temporal extent of stay-at-home policies on the European atmosphere, at both local and regional scales,
- evaluating the impact of lockdown measures on the formation of secondary pollutants,
- documenting the impact of reduced emissions (including air-traffic emissions) on cloud properties and occurrence, and
- estimating the “missing” emissions using observation–model approaches. The outcome from the special issue aims to provide an in-depth analysis of the perturbation induced by the repeated lockdowns on the complex atmospheric system. The special issue is open for all submissions within its scope.
2020
2018
2016
It consists of about 60 sites located all over the world. The main instrument at each site is the sun—sky radiometer, but to strengthen the ability of SKYNET, simultaneous measurements with other instruments such as pyranometers, pirgeometers, microwave radiometers, absorption meters, cloud cameras, lidars, MAX-DOAS, and instrumentation for in situ characterisation are also conducted for some selected sites.
This special issue will face issues related to the following topics: aerosol and cloud properties from radiometers; developments on instrumentation; aerosol radiative forcing and climate effects; intercomparison among radiometer networks; validation of aerosol and cloud properties from satellite and models; applications for air pollution studies; and applications for solar energy.